skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Behnam, Payman"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep neural networks are increasingly required to operate across diverse hardware platforms, latency constraints, and power budgets, which motivates the need for specialized models for each scenario. However, designing and training a separate model per scenario or serving a large ensemble of models is often impractical. Weight sharing has emerged as a promising paradigm to address this challenge by training a single ''SuperNet'' that subsumes many sub-models (SubNets), and by reusing weights across those SubNets both at training and inference time. This paper provides an abridged survey of our recent advances that leverage weight sharing for efficient AI, covering both training and inference serving. In centralized once-for-all training, Delayed ε-Shrinking (DεS) improves training efficiency by strategically scheduling the introduction of smaller SubNets during training. In a federated fashion, SuperFedNas co-trains a SuperNet across distributed clients and disjoins training and searching, which enables oneshot specialization to many deployment targets at minimal cost. ∇QDARTS integrates quantization into differentiable architecture search, jointly finding neural architectures, weights, and low-precision settings to yield highly efficient models in a single search. For inference serving, SuperServe introduces a weight-shared model with dynamic SubNet routing (SubNetAct) to instantaneously switch among a spectrum of accuracy-latency operating points, coupled with a scheduler (SlackFit) for unpredictable workloads. Finally, SUSHI co-designs model, system, and accelerator to exploit weightshared SuperNets on tinyML devices, caching SubGraphs on FPGA to reduce latency and energy. Together, these works demonstrate that the weight sharing paradigm can dramatically improve the efficiency of both training and inference serving of deep models across a range of scenarios. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  2. Neural Architecture Search (NAS) for Federated Learning (FL) is an emerging field. It automates the design and training of Deep Neural Networks (DNNs) when data cannot be centralized due to privacy, communication costs, or regulatory restrictions. Recent federated NAS methods not only reduce manual effort but also help achieve higher accuracy than traditional FL methods like FedAvg. Despite the success, existing federated NAS methods still fall short in satisfying diverse deployment targets common in on-device inference including hardware, latency budgets, or variable battery levels. Most federated NAS methods search for only a limited range of neuro-architectural patterns, repeat them in a DNN, thereby restricting achievable performance. Moreover, these methods incur prohibitive training costs to satisfy deployment targets. They perform the training and search of DNN architectures repeatedly for each case. SuperFedNAS addresses these challenges by decoupling the training and search in federated NAS. SuperFedNAS co-trains a large number of diverse DNN architectures contained inside one supernet in the FL setting. Post-training, clients perform NAS locally to find specialized DNNs by extracting different parts of the trained supernet with no additional training. SuperFedNAS takes O(1) (instead of O(N)) cost to find specialized DNN architectures in FL for any N deployment targets. As part of SuperFedNAS, we introduce MaxNet—a novel FL training algorithm that performs multi-objective federated optimization of DNN architectures (≈5∗108) under different client data distributions. SuperFedNAS achieves upto 37.7\% higher accuracy or upto 8.13x reduction in MACs than existing federated NAS methods. 
    more » « less
  3. Tiny machine learning (TinyML) applications increasingly operate in dynamically changing deployment scenarios, requiring optimization for both accuracy and latency. Existing methods mainly target a single point in the accuracy/latency tradeoff space, which is insufficient as no single static point can be optimal under variable conditions. We draw on a recently proposed weight-shared SuperNet mechanism to enable serving a stream of queries that activates different SubNets within a SuperNet. This creates an opportunity to exploit the inherent temporal locality of different queries that use the same SuperNet. We propose a hardware–software co-design called SUSHI that introduces a novel SubGraph Stationary optimization. SUSHI consists of a novel field-programmable gate array implementation and a software scheduler that controls which SubNets to serve and which SubGraph to cache in real time. SUSHI yields up to a 32% improvement in latency, 0.98% increase in served accuracy, and achieves up to 78.7% off-chip energy saved across several neural network architectures. 
    more » « less
  4. Song, Dawn; Carbin, Michael; Chen, T (Ed.)
  5. As the number of weight parameters in deep neural networks (DNNs) continues growing, the demand for ultra-efficient DNN accelerators has motivated research on non-traditional architectures with emerging technologies. Resistive Random-Access Memory (ReRAM) crossbar has been utilized to perform insitu matrix-vector multiplication of DNNs. DNN weight pruning techniques have also been applied to ReRAM-based mixed-signal DNN accelerators, focusing on reducing weight storage and accelerating computation. However, the existing works capture very few peripheral circuits features such as Analog to Digital converters (ADCs) during the neural network design. Unfortunately, ADCs have become the main part of power consumption and area cost of current mixed-signal accelerators, and the large overhead of these peripheral circuits is not solved efficiently. To address this problem, we propose a novel weight pruning framework for ReRAM-based mixed-signal DNN accelerators, named TINYADC, which effectively reduces the required bits for ADC resolution and hence the overall area and power consumption of the accelerator without introducing any computational inaccuracy. Compared to state-of-the-art pruning work on the ImageNet dataset, TINYADC achieves 3.5× and 2.9× power and area reduction, respectively. TINYADC framework optimizes the throughput of state-of-the-art architecture design by 29% and 40% in terms of the throughput per unit of millimeter square and watt (GOPs/s×mm 2 and GOPs/w), respectively. 
    more » « less
  6. Over the past decade, three-dimensional die stacking technology has been considered for building large-scale in-package memory systems. In particular, in-package DRAM cache has been considered as a promising solution for high bandwidth and large-scale cache architectures. There are, however, significant challenges such as limited energy efficiency, costly tag management, and physical limitations for scalability that need to be effectively addressed before one can adopt in-package caches in the real-world applications. This paper proposes R-Cache, an in-package cache made by 3D die stacking of memristive memory arrays to alleviate the above-mentioned challenges. Our simulation results on a set of memory intensive parallel applications indicate that R-Cache outperforms the state-of-the-art proposals for in-package caches. R-Cache improves performance by 38% and 27% over the state-of-the-art direct mapped and set associative cache architectures, respectively. Moreover, R-Cache results in averages of 40% and 27% energy reductions as compared to the direct mapped and set-associative cache systems. 
    more » « less